If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9y2 + -1y + 3 = 0 Reorder the terms: 3 + -1y + 9y2 = 0 Solving 3 + -1y + 9y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.3333333333 + -0.1111111111y + y2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + -0.1111111111y + -0.3333333333 + y2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + -0.1111111111y + y2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + -0.1111111111y + y2 = 0 + -0.3333333333 -0.1111111111y + y2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 -0.1111111111y + y2 = -0.3333333333 The y term is -0.1111111111y. Take half its coefficient (-0.05555555555). Square it (0.003086419752) and add it to both sides. Add '0.003086419752' to each side of the equation. -0.1111111111y + 0.003086419752 + y2 = -0.3333333333 + 0.003086419752 Reorder the terms: 0.003086419752 + -0.1111111111y + y2 = -0.3333333333 + 0.003086419752 Combine like terms: -0.3333333333 + 0.003086419752 = -0.330246913548 0.003086419752 + -0.1111111111y + y2 = -0.330246913548 Factor a perfect square on the left side: (y + -0.05555555555)(y + -0.05555555555) = -0.330246913548 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 7v^2=112 | | 1+64a^9=0 | | 38=x+2x | | 25s^3-4s=0 | | 4x^2+16x=20 | | -2(5z-4)+6z=4 | | 4(-5+x)=5x+0.5 | | 54=3x | | -3r=84 | | 2t^2-32=0 | | a-92=-73 | | 4(x-3)=-8 | | 10t^2=24+22t | | 4b^2+23b+28=0 | | 4x-4=3x+3 | | -38=-89+x | | 3x^2-8x-4=0 | | -35-6n=7(6n-5) | | 300=20s | | 28x^5-58x^4-30x^3= | | 2(5x+10)=90 | | -x^2+9x-16=0 | | 3b^3+b^2+27b=9 | | 12a+2a=-6(3-2a)+5(a+12) | | 42=3t+3 | | 10h=70 | | 3a+15=33 | | 2n+19=37 | | 7(2x+2)=182 | | 400+3*5000=12x | | 28x^5-58x^4-30x= | | x+x+x+x+x+x+x+6=x+x+x+x+x+x |